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Problem: Canonically decompose k-con'd G along k-separators
into parts that are (k + 1)-con’d or ‘basic'.

canonical :<= Aut(G)-invariant
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Theorem (Tutte 66)
Every 2-con'd G decomposes along its totally-nested 2-separators

into 3-con'd graphs, cycles and K5's.
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<= k-con'd and every k-sep'r cuts off only one vertex
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every vx in AN B has > 2 neighb's in A and B.
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4-connectivity?
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into quasi-(k + 1)

Challenge 2: Verbatim extension of tri-separations to & = 4
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Guess: Every k-con'd G decomposes along its totally-nested k-separators
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Challenge 2: Verbatim extension of tri-separations to k = 4 fails!

A tri-separation of G is a mixed-sep'n (A, B) with |sep’r| = 3 s.t.
every vx in AN B has > 2 neighb's in A and B.
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Challenge 2 for k = 4:

A tetra-separation of G is a mixed-sep'n (A, B) with [sep'r| =4 s.t.:
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Main result (K. & Planken 25)
Every 4-con'd G decomposes along its totally-nested tetra-separations

into parts that are

e quasi-b-con'd e thickened Ky,
e generalised double-wheels e cycles of triangles and 3-con'd graphs
on < 5 vxs.
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Corollary (K. & Planken 25)

Every 3-con'd G decomposes along its totally-nested

strict tri-separations into parts that are

e quasi-4-con’'d o generalised wheels o thickened K3,
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quasi-4-con’d

4-con'd



block-cut

Tutte

tri-sep'ns

Y-A

tetra-sep’ns

con'd

I
2-con'd

I
3-con'd

I

quasi-4-con'd

I3

4-con'd

4

quasi-5-con’d

Ko, K

cycle, Ky

wheel, thickened K3




Problem: Classify all vertex-transitive finite con'd G
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Theorem (K. & Planken 25)

Every quasi-4-con'd vertex-transitive finite GG is either
o bagel-like or cube-like,
e quasi-5-con'd or

K4 /Cy-expansion of a 4-regular quasi-5-con’d arc-transitive graph.
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Open: Extend Tutte's decomposition to all k.

Open: Directed graphs?
k = 1. Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23
k>2: 77



Tetra-separation: mixed-sep'n (A, B) with |sep'r| = 4 such that
every vx in AN B has > 2 neighb's in A~ B and in B\ A,

and cross-edges form matching.

Main result (K. & Planken 25)
Every 4-con'd G decomposes along its totally-nested tetra-separations
into parts that are quasi-5-con'd, thickened K4 ,,'s,
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Open: Graphs for k > 5. Digraphs for k >

or
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Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 25+)
JFPT-algorithm with runtime C(¢) - Poly( |V (G)]) and

Input: Graph G, ¢ € Nand F C E(G)
Output:  No, or </{-sized X C F such that G + X is 4-con'd
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Proof of tetra-decomposition
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Crossing Lemma. Tetra-sep’ns only cross symmetrically:
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(A, B) totally-nested
<= the sep'r of (A, B) is highly con'd:
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