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canonical :⇐⇒ Aut(G)-invariant

Decomposing G along a k-separator:



Problem: Canonically decompose k-con’d G along k-separators

into parts that are (k + 1)-con’d or ‘basic’.

k = 1:



Problem: Canonically decompose k-con’d G along k-separators

into parts that are (k + 1)-con’d or ‘basic’.

k = 2:



Problem: Canonically decompose k-con’d G along k-separators

into parts that are (k + 1)-con’d or ‘basic’.

k = 2:



Problem: Canonically decompose k-con’d G along k-separators

into parts that are (k + 1)-con’d or ‘basic’.

k = 2:



Two k-separators cross if they separate each other;

otherwise they are nested.



Two k-separators cross if they separate each other;

otherwise they are nested.

A k-separator is totally-nested if it is nested with every k-separator.



Two k-separators cross if they separate each other;

otherwise they are nested.

A k-separator is totally-nested if it is nested with every k-separator.

Theorem (Tutte 66)

Every 2-con’d G decomposes along its totally-nested 2-separators

into 3-con’d graphs, cycles and K2’s.
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Main result (K. & Planken 25)

Every 4-con’d G decomposes along its totally-nested tetra-separations

into parts that are

• quasi-5-con’d

• generalised double-wheels

• thickened K4,m

• cycles of triangles and 3-con’d graphs

on ⩽ 5 vxs.



Corollary (K. & Planken 25)

Every 3-con’d G decomposes along its totally-nested

strict tri-separations into parts that are

• quasi-4-con’d • generalised wheels • thickened K3,m
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Every vertex-transitive finite con’d G is either

• a cycle, K2, K1,

• quasi-4-con’d or

K3-expansion of a 3-regular quasi-4-con’d arc-transitive graph.

Theorem (K. & Planken 25)

Every quasi-4-con’d vertex-transitive finite G is either

• bagel-like or cube-like,

• quasi-5-con’d or

K4/C4-expansion of a 4-regular quasi-5-con’d arc-transitive graph.
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Open: Extend Tutte’s decomposition to all k.

Open: Directed graphs?

k = 1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23

k ⩾ 2: ???



Tetra-separation: mixed-sep’n (A,B) with |sep’r| = 4 such that

every vx in A ∩B has ⩾ 2 neighb’s in A∖B and in B ∖A,

and cross-edges form matching.

Main result (K. & Planken 25)

Every 4-con’d G decomposes along its totally-nested tetra-separations

into parts that are quasi-5-con’d, thickened K4,m’s,

or

Open: Graphs for k ⩾ 5. Digraphs for k ⩾ 2.

arXiv: 2504.00760 Thank you :) Slides: jan-kurkofka.eu



Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 25+)

∃FPT-algorithm with runtime C(ℓ) · Poly( |V (G)| ) and
Input: Graph G, ℓ ∈ N and F ⊆ E(G )

Output: No, or ⩽ ℓ-sized X ⊆ F such that G+X is 4-con’d
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Proof of tetra-decomposition
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Crossing Lemma. Tetra-sep’ns only cross symmetrically:
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(A,B) totally-nested

⇐⇒ the sep’r of (A,B) is highly con’d:
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