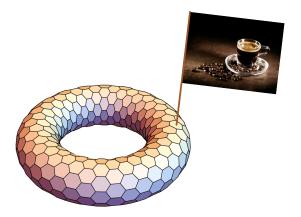
A Tutte-type canonical decomposition of 3- and 4-connected graphs

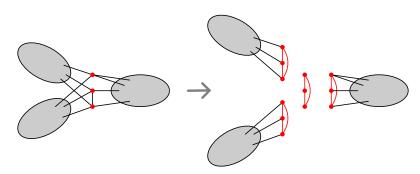
Jan Kurkofka (TU Freiberg)



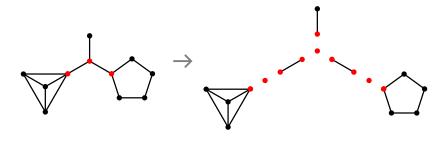
Joint work with Tim Planken BWAG '25

canonical $:\iff \operatorname{Aut}(G)$ -invariant

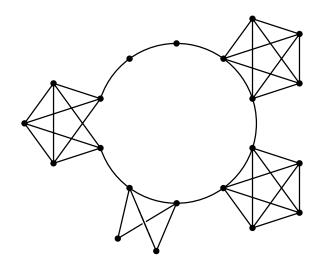
Decomposing G along a k-separator:



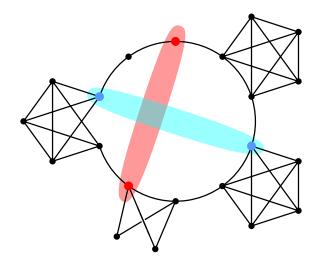
k = 1:



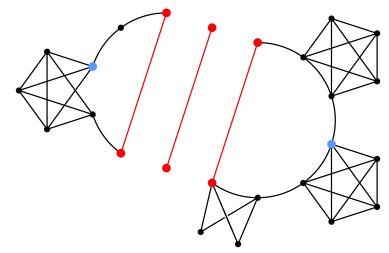
k = 2:



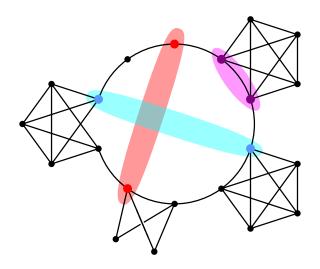
k = 2:



k = 2:

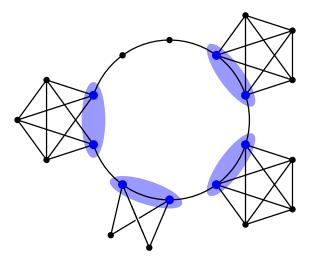


Two k-separators cross if they separate each other; otherwise they are nested.



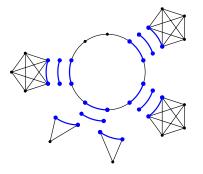
Two k-separators cross if they separate each other; otherwise they are nested.

A k-separator is totally-nested if it is nested with every k-separator.



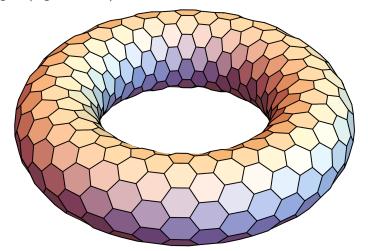
Two k-separators cross if they separate each other; otherwise they are nested.

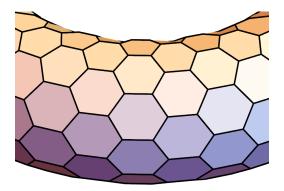
A k-separator is *totally-nested* if it is nested with every k-separator.



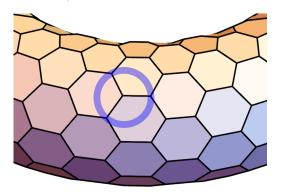
Theorem (Tutte 66)

Every 2-con'd G decomposes along its totally-nested 2-separators into 3-con'd graphs, cycles and K_2 's.



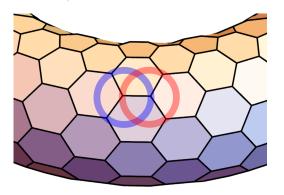


Challenge 1 (Figure: k = 3)



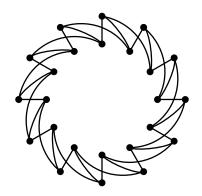
(set of all k-separators) = { $N(v) : v \in V(G)$ }

Challenge 1 (Figure: k = 3)



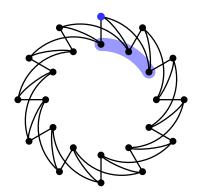
(set of all k-separators) = $\{N(v) : v \in V(G)\}$ \implies for every edge uv : N(u) crosses N(v).

Challenge 1 (Figure: k = 3)



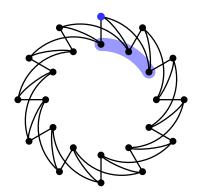
(set of all k-separators) = { $N(v) : v \in V(G)$ } \Longrightarrow for every edge uv : N(u) crosses N(v).

Challenge 1 (Figure: k = 3)



(set of all k-separators) = { $N(v) : v \in V(G)$ } \Longrightarrow for every edge uv : N(u) crosses N(v).

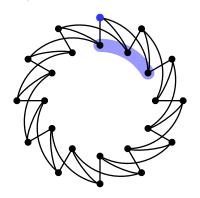
Challenge 1 (Figure: k = 3)



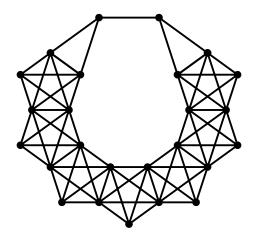
(set of all k-separators) = $\{N(v) : v \in V(G)\}$ \implies for every edge uv : N(u) crosses N(v).

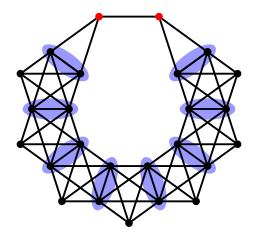
 \iff k-con'd and every k-sep'r cuts off only one vertex

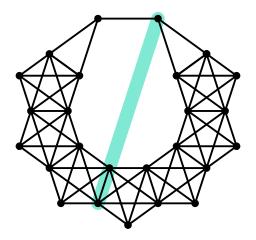
Challenge 1 (Figure: k = 3)

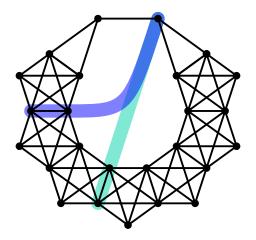


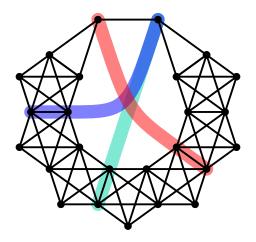
(set of all k-separators) = $\{N(v) : v \in V(G)\}$ \implies for every edge uv : N(u) crosses N(v).

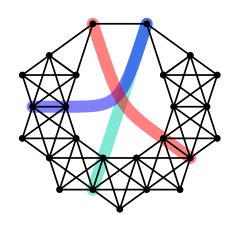


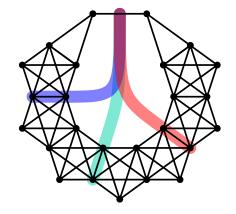


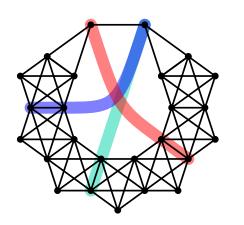


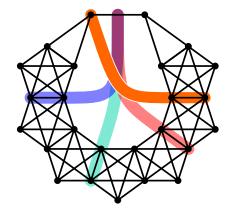


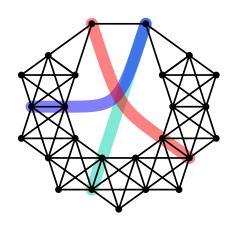


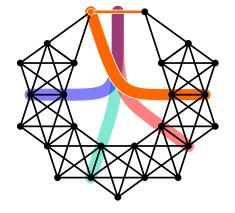


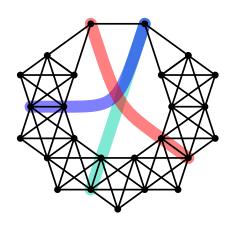


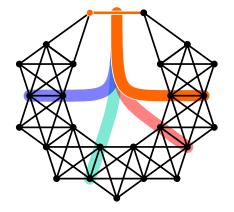




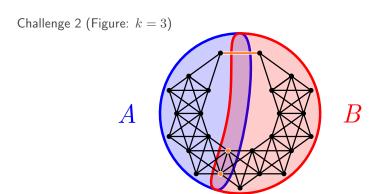








Guess: Every k-con'd G decomposes along its totally-nested k-separators into quasi-(k+1)-con'd graphs and 'basic' graphs.



 $\label{eq:mixed-separation} \begin{array}{ll} \textit{mixed-separation} \mbox{ of } G \colon & (A,B) \mbox{ with } A \cup B = V(G) \mbox{ and } A,B \neq V(G) \\ & \textit{separator} \mbox{ of } (A,B) \colon & (A \cap B) \cup E(A \smallsetminus B,B \smallsetminus A) \end{array}$

A **tri-separation** of G is a mixed-sep'n (A,B) with |sep'r|=3 s.t. every vx in $A\cap B$ has $\geqslant 2$ neighb's in A and B.

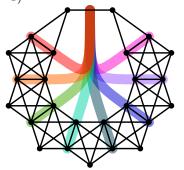
Guess: Every k-con'd G decomposes along its totally-nested k-separators into quasi-(k+1)-con'd graphs and 'basic' graphs.

Challenge 2 (Figure: k=3) $A \qquad \qquad B$

mixed-separation of G: (A,B) with $A \cup B = V(G)$ and $A,B \neq V(G)$ separator of (A,B): $(A \cap B) \cup E(A \setminus B, B \setminus A)$

A **tri-separation** of G is a mixed-sep'n (A,B) with |sep'r|=3 s.t. every vx in $A\cap B$ has $\geqslant 2$ neighb's in A and B.

Challenge 2 (Figure: k = 3)



mixed-separation of G: (A,B) with $A \cup B = V(G)$ and $A,B \neq V(G)$ separator of (A,B): $(A \cap B) \cup E(A \setminus B, B \setminus A)$

A **tri-separation** of G is a mixed-sep'n (A,B) with |sep'r|=3 s.t. every vx in $A\cap B$ has $\geqslant 2$ neighb's in A and B.

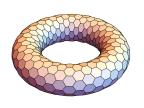
Theorem (Carmesin & K. 23)

Every 3-con'd ${\cal G}$ decomposes along its totally-nested nontrivial tri-separations into parts that are

• quasi-4-con'd

wheels

• thickened $K_{3,m}$





 η

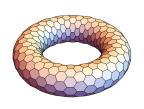
Theorem (Carmesin & K. 23)

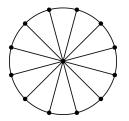
Every 3-con'd ${\cal G}$ decomposes along its totally-nested nontrivial tri-separations into parts that are

quasi-4-con'd

wheels

• thickened $K_{3,m}$

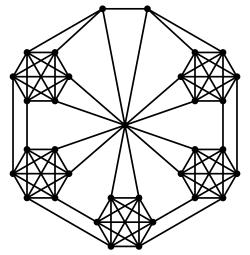




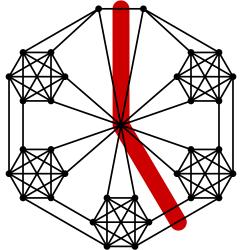
4-connectivity?

m

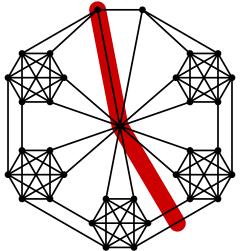
Challenge 2: Verbatim extension of tri-separations to $k=4\,$



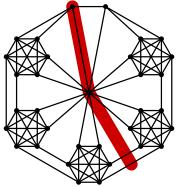
Challenge 2: Verbatim extension of tri-separations to $k=4\,$



Challenge 2: Verbatim extension of tri-separations to $k=4\,$

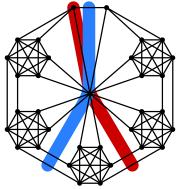


Challenge 2: Verbatim extension of tri-separations to k=4



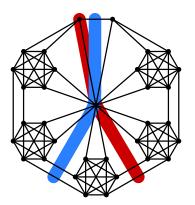
A tri-separation of G is a mixed-sep'n (A,B) with $|\mathsf{sep'r}| = 3$ s.t. every vx in $A \cap B$ has $\geqslant 2$ neighb's in A and B.

Challenge 2: Verbatim extension of tri-separations to k=4 fails!



A tri-separation of G is a mixed-sep'n (A,B) with $|\mathsf{sep'r}| = 3$ s.t. every vx in $A \cap B$ has $\geqslant 2$ neighb's in A and B.

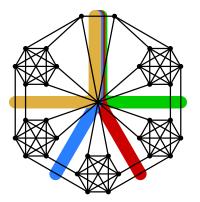
Challenge 2 for k = 4:



A **tetra-separation** of G is a mixed-sep'n (A, B) with |sep'r| = 4 s.t.:

- every vx in $A \cap B$ has $\geqslant 2$ neighb's in $A \setminus B$ and $B \setminus A$
- the edges in the sep'r form a matching

Challenge 2 for k = 4:



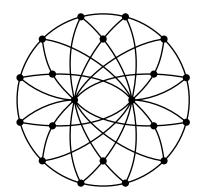
A **tetra-separation** of G is a mixed-sep'n (A, B) with |sep'r| = 4 s.t.:

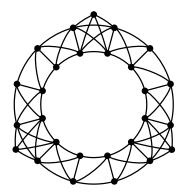
- every vx in $A \cap B$ has $\geqslant 2$ neighb's in $A \setminus B$ and $B \setminus A$
- the edges in the sep'r form a matching

Main result (K. & Planken 25)

Every 4-con'd ${\cal G}$ decomposes along its totally-nested tetra-separations into parts that are

- quasi-5-con'd
- generalised double-wheels
- thickened $K_{4,m}$
- cycles of triangles and 3-con'd graphs on ≤ 5 vxs.

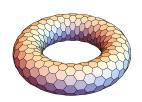


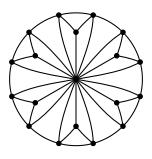


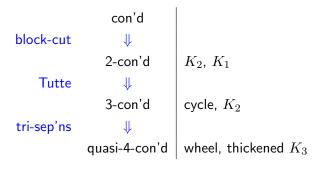
Corollary (K. & Planken 25)

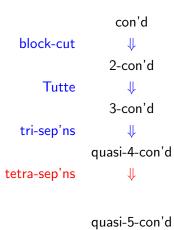
Every 3-con'd G decomposes along its totally-nested strict tri-separations into parts that are

• thickened $K_{3,m}$





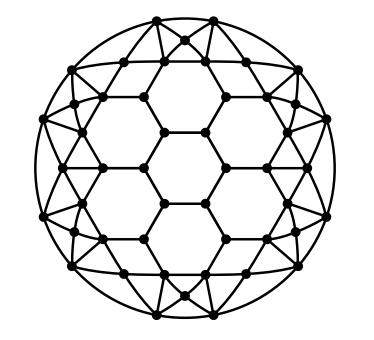




 K_2 , K_1

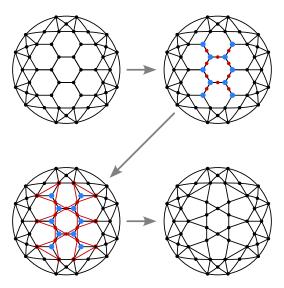
cycle, K_2

wheel, thickened K_3



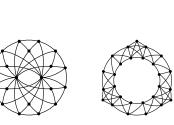
canonical Y- Δ transformation

quasi-4-con'd



$$\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

 K_2 , K_1 cycle, K_2 wheel, thickened K_3



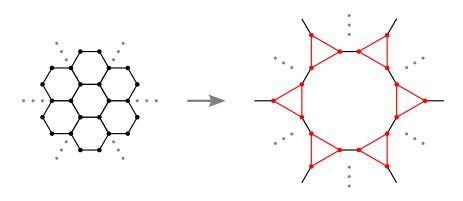
Problem:	Classify all ${f vertex-transitive}$ finite con'd G	

Theorem (Carmesin & K. 23)

Every vertex-transitive finite con'd G is either

- a cycle, K_2 , K_1 ,
- quasi-4-con'd or

 K_3 -expansion of a 3-regular quasi-4-con'd arc-transitive graph.



Theorem (Carmesin & K. 23)

Every vertex-transitive finite con'd G is either

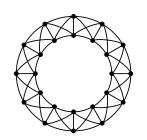
- a cycle, K₂, K₁,
- quasi-4-con'd or
 K₃-expansion of a 3-regular quasi-4-con'd arc-transitive graph.

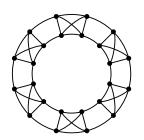
Theorem (K. & Planken 25)

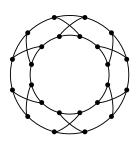
Every quasi-4-con'd vertex-transitive finite G is either

- bagel-like or cube-like,
- quasi-5-con'd or K_4/C_4 -expansion of a 4-regular quasi-5-con'd arc-transitive graph.

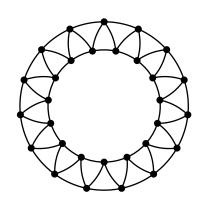
bagel-like

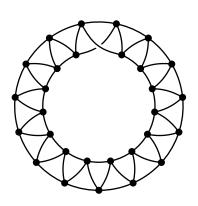




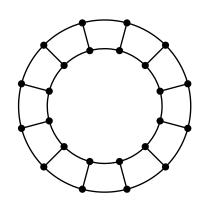


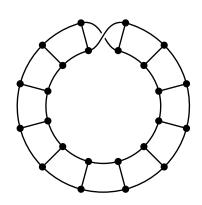
bagel-like

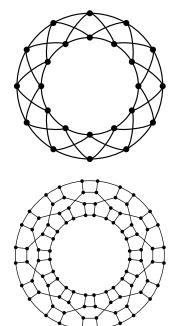


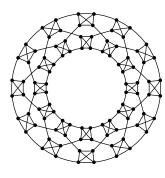


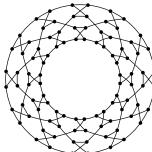
bagel-like



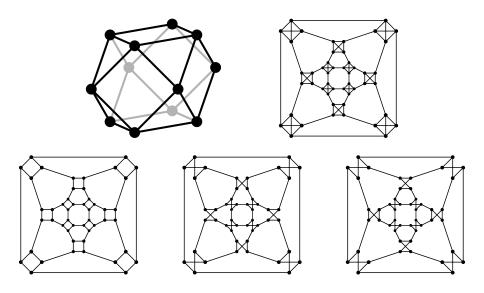








cube-like



Open: Extend Tutte's decomposition to all k.

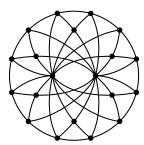
Open: Directed graphs?

k=1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23 $k\geqslant 2$: ???

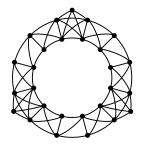
Tetra-separation: mixed-sep'n (A,B) with $|\mathsf{sep'r}| = 4$ such that every vx in $A \cap B$ has $\geqslant 2$ neighb's in $A \smallsetminus B$ and in $B \smallsetminus A$, and cross-edges form matching.

Main result (K. & Planken 25)

Every 4-con'd G decomposes along its totally-nested tetra-separations into parts that are quasi-5-con'd, thickened $K_{4,m}$'s,



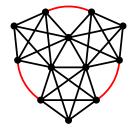
or



Open: Graphs for $k \geqslant 5$. Digraphs for $k \geqslant 2$.

arXiv: 2504.00760 Thank you :) Slides: jan-kurkofka.eu

Application: Connectivity Augmentation from 0 to 4



Theorem (Carmesin & Sridharan 25+)

 $\exists\operatorname{FPT-algorithm}$ with runtime $C(\ell)\cdot\operatorname{Poly}(\,|V(G)|\,)$ and

Input: Graph G, $\ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$

Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd

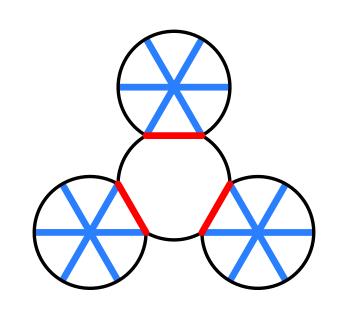
Application: Connectivity Augmentation from 0 to 4

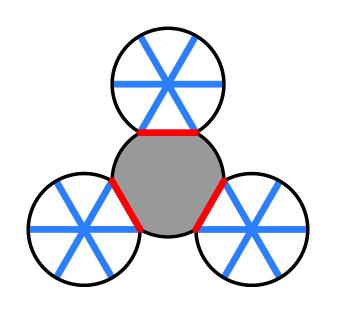
Theorem (Carmesin & Sridharan 25+)

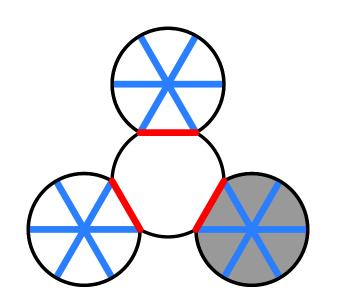
 $\exists\operatorname{FPT-algorithm}$ with runtime $C(\ell)\cdot\operatorname{Poly}(\,|V(G)|\,)$ and

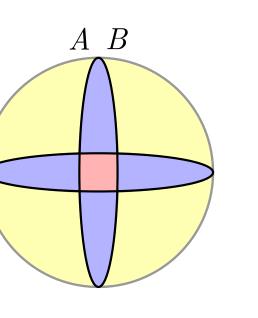
Input: Graph G, $\ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$

Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd

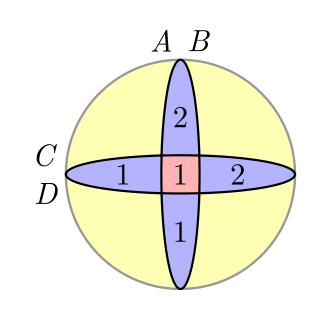




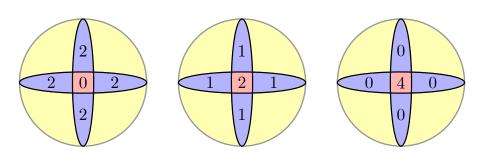


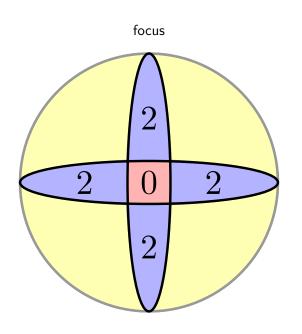


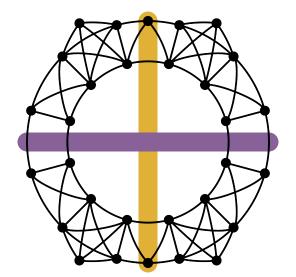
C D

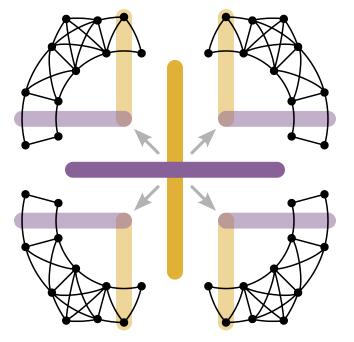


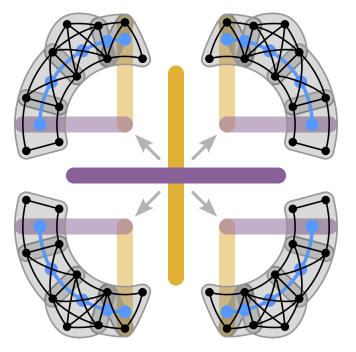
Crossing Lemma. Tetra-sep'ns only cross symmetrically:

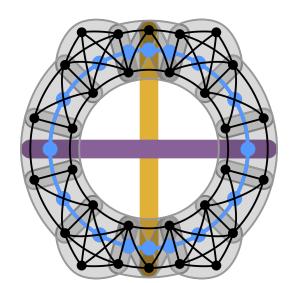


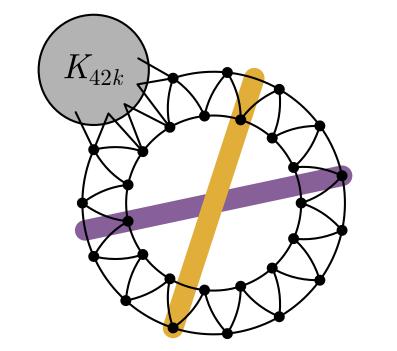


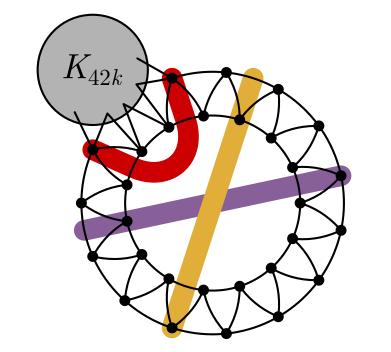












(A,B) totally-nested

 \iff the sep'r of (A,B) is highly con'd:

