Towards a Stallings-type theorem for finite groups

Jan Kurkofka

TU Freiberg

Joint work with

Johannes Carmesin, George Kontogeorgiou and Will J. Turner

Problem. Detect product-structure in groups through combinatorial properties of their Cayley graphs.

Example. Stallings' Theorem uses ends of Caley graphs...

end of a graph: equivalence class of 1-way infinite paths w.r.t. the relation 'not separable by finitely many vertices'

Theorem (Stallings).

TFAE for every group Γ with finite generating set S:

- ► Cay(Γ , S) has ≥ 2 ends; [this is independent of S]
- Γ decomposes as a non-trivial amalgamated free product or HNN-extension over a finite subgroup.

 $\mathsf{Cay}(\Gamma, S)$ has $\geqslant 2$ ends

 $\Leftrightarrow \ \Gamma \text{ decomposes as a non-trivial amalgamated free product or} \\ \text{HNN-extension over a finite subgroup.}$

Open problem. Extend Stallings' theorem to finite groups.

Challenges.

- 1. Ends have no finite counterparts
- 2. Key step of the proof fails for finite $\boldsymbol{\Gamma}$

Proof idea. First, find separator X of Cay (Γ, S) that crosses no separators in its Γ -orbit:

Proof idea. First, find separator X of Cay (Γ, S) that crosses no separators in its Γ -orbit:

Then show that Γ decomposes over the stabilizer of X. (\Box)

Proof idea. First, find separator X of Cay (Γ, S) that crosses no separators in its Γ -orbit:

 (\Box)

Then show that Γ decomposes over the stabilizer of X.

Challenge for finite Γ . If X exists, then Γ must be infinite:

Recent development in graph-minor theory:

local separators

Rough idea: vertex-sets that separate G <u>locally</u> in a ball of given radius r/2 > 0, not necessarily G itself

- A *covering* of G is a surjective graph-homomorphism $p: C \to G$ such that for every vertex $v \in C$:
 - ▶ p restricts to a bijection $E_C(v) \rightarrow E_G(p(v))$.

Example. Universal coverings are trees.

 $\forall G \text{ and } r > 0 \text{ there is a unique } r\text{-local covering } p_r \colon G_r \to G \text{ s.t.}$

- 1. p_r restricts to an isomorphism $B_{G_r}(v, r/2) \rightarrow B_G(p_r(v), r/2)$ for every $v \in V(G_r)$, and
- 2. p_r is 'nearest' to the universal covering with (1).

r-local separators of G := projections of separators of G_r (roughly)

Ideas for challenges for finite Γ .

- 1. Use ends of r-local covering of some $Cay(\Gamma, S)$.
- 2. Use Γ -orbit of suitable *r*-local separator in proof.

Main result (Carmesin, Kontogeorgiou, K., Turner '24)

TFAE for every finite nilpotent group Γ of class $\leqslant n$ and $r \ge 4^{n+1}$:

- The r-local covering of some Cayley graph G of Γ has ≥ 2 ends that are separated by ≤ 2 vertices.
- G has an r-local separator of size ≤ 2 and $|\Gamma| > r$.

• $\Gamma \cong \mathbb{Z}_i \times \mathbb{Z}_j$ for some i > r and $j \in \{1, 2\}$.

Why nilpotent?

r-local covering has 2^{\aleph_0} ends separated by cutvertices for $r \leq 9$. But A_5 is simple.

Open problem. Extend main result to solvable groups.

Why only (local) separators of size ≤ 2 ?

Heavily exploited in proof...

Theorem (Tutte 60s) Every 2-connected graph is either

- 3-connected,
- ▶ has a 2-separator that crosses no other 2-separator, or

▶ is a cycle.

Why only (local) separators of size ≤ 2 ?

Heavily exploited in proof...

Theorem (Carmesin '20) Every r-locally 2-connected graph is

- r-locally 3-connected,
- has an *r*-local 2-separator that crosses no other *r*-local 2-separators, or
- is a cycle of length $\leq r$.

Open problem. Extend main result to local separators of size > 2.

Why are dihedral groups missing?

Answer. $r \ge 4^{n+1}$ is too bad.

Open problem. Improve bound on r. Dihedral groups should appear. What other new products appear?

Main result.

TFAE for every finite nilpotent group Γ of class $\leqslant n$ and $r \ge 4^{n+1}$:

- The r-local covering of some Cayley graph G of Γ has ≥ 2 ends that are separated by ≤ 2 vertices.
- G has an r-local separator of size ≤ 2 and $|\Gamma| > r$.
- $\Gamma \cong \mathbb{Z}_i \times \mathbb{Z}_j$ for some i > r and $j \in \{1, 2\}$.

Open: Solvable groups • Local (> 2)-separators • Better bounds.

arXiv:2403.07776 \longrightarrow Slides: jan-kurkofka.eu

Thank you!