
Canonical decompositions of 3-connected graphs

Jan Kurkofka

Joint work with Johannes Carmesin

University of Birmingham

FOCS 2023

Problem: Decompose k-con’d G along k-separators

into pieces that are (k + 1)-con’d or ‘basic’.

Decomposing G along a k-separator:

Problem: Decompose k-con’d G along k-separators

into pieces that are (k + 1)-con’d or ‘basic’.

k = 1:

Problem: Decompose k-con’d G along k-separators

into pieces that are (k + 1)-con’d or ‘basic’.

k = 2:

Problem: Decompose k-con’d G along k-separators

into pieces that are (k + 1)-con’d or ‘basic’.

k = 2:

Problem: Decompose k-con’d G along k-separators

into pieces that are (k + 1)-con’d or ‘basic’.

k = 2:

Two k-separators cross if they separate each other;

otherwise they are nested.

Two k-separators cross if they separate each other;

otherwise they are nested.

A k-separator is totally-nested if it is nested with every k-separator.

Two k-separators cross if they separate each other;

otherwise they are nested.

A k-separator is totally-nested if it is nested with every k-separator.

Theorem (Tutte 66), SPQR-trees

Every 2-con’d G decomposes along its totally-nested 2-separators

into 3-con’d graphs, cycles and K2’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into 4-con’d graphs, wheels and K3’s.

Theorem (Tutte 66), SPQR-trees

Every 2-con’d G decomposes along its totally-nested 2-separators

into 3-con’d graphs, cycles and K2’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

3-con’d, > 4 vertices, every 3-separator has form

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

Guess

Every 3-con’d G decomposes along its totally-nested 3-separators

into quasi 4-con’d graphs, wheels and K3’s.

mixed-separation of G: {A,B} with A ∪B = V (G) and

both A∖B and B ∖A nonempty

separator of {A,B}: (A ∩B) ∪ E(A∖B,B ∖A)

tri-separation of G: mixed-sep’n {A,B} with |sep’r| = 3

and every vx in A ∩B has two neighb’s

in G[A] and in G[B]

mixed-separation of G: {A,B} with A ∪B = V (G) and

both A∖B and B ∖A nonempty

separator of {A,B}: (A ∩B) ∪ E(A∖B,B ∖A)

tri-separation of G: mixed-sep’n {A,B} with |sep’r| = 3

and every vx in A ∩B has two neighb’s

in G[A] and in G[B]

mixed-separation of G: {A,B} with A ∪B = V (G) and

both A∖B and B ∖A nonempty

separator of {A,B}: (A ∩B) ∪ E(A∖B,B ∖A)

tri-separation of G: mixed-sep’n {A,B} with |sep’r| = 3

and every vx in A ∩B has two neighb’s

in G[A] and in G[B]

A B

mixed-separation of G: {A,B} with A ∪B = V (G) and

both A∖B and B ∖A nonempty

separator of {A,B}: (A ∩B) ∪ E(A∖B,B ∖A)

tri-separation of G: mixed-sep’n {A,B} with |sep’r| = 3

and every vx in A ∩B has two neighb’s

in G[A] and in G[B]

trivial

mixed-separation of G: {A,B} with A ∪B = V (G) and

both A∖B and B ∖A nonempty

separator of {A,B}: (A ∩B) ∪ E(A∖B,B ∖A)

tri-separation of G: mixed-sep’n {A,B} with |sep’r| = 3

and every vx in A ∩B has two neighb’s

in G[A] and in G[B]

totally-nested nontrivial tri-separations

totally-nested nontrivial tri-separations

none

totally-nested nontrivial tri-separations

none

totally-nested nontrivial tri-separations

none

totally-nested nontrivial tri-separations

none

totally-nested nontrivial tri-separations

none

Decomposing along a tri-separation

Main result (Carmesin & K. 23)

Every 3-con’d G decomposes along its totally-nested nontrivial

tri-separations into minors of G that are

• quasi 4-con’d

• wheels

• thickened K3,m

or G = K3,m (m ⩾ 0).

Grohe 16 Carmesin & K. 23

method recursive Tutte (totally nested)

decomposition 3-separations tri-separations

torsos K4, wheels,

quasi 4-con’d, K3 quasi 4-con’d, thickened K3,m

canonical no yes

algorithm O(n2(n+m)) ???

Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 23+)

∃FPT-algorithm with runtime C(ℓ) · Poly(|V (G)|) and
Input: Graph G, ℓ ∈ N and F ⊆ E(G)

Output: No, or ⩽ ℓ-sized X ⊆ F such that G+X is 4-con’d

Application: Connectivity Augmentation from 0 to 4

F

Theorem (Carmesin & Sridharan 23+)

∃FPT-algorithm with runtime C(ℓ) · Poly(|V (G)|) and
Input: Graph G, ℓ ∈ N and F ⊆ E(G)

Output: No, or ⩽ ℓ-sized X ⊆ F such that G+X is 4-con’d

Open: Extend the main result to k-separations for k ⩾ 4.

Open: Efficient algorithms?

Open: Directed graphs?

k = 1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23

k ⩾ 2: ???

Open: Extend the main result to k-separations for k ⩾ 4.

Open: Efficient algorithms?

Open: Directed graphs?

k = 1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23

k ⩾ 2: ???

Thank you!

