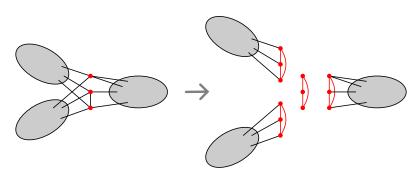
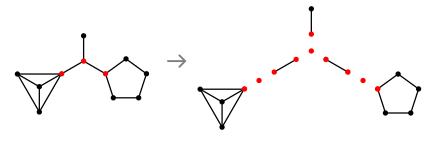
Canonical decompositions of 3-connected graphs

Joint work with Johannes Carmesin
University of Birmingham
FOCS 2023

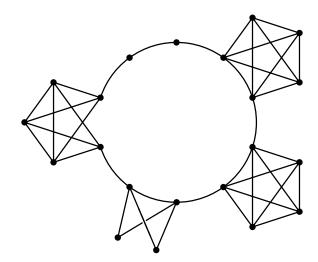
Decomposing G along a k-separator:



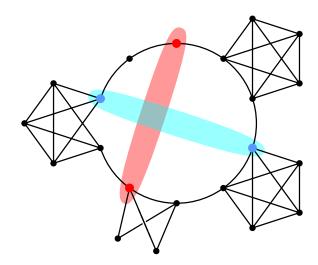
k = 1:



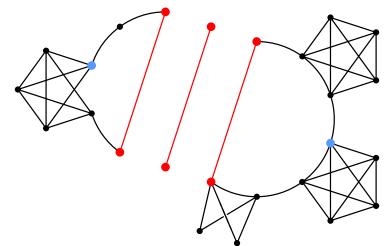
k = 2:



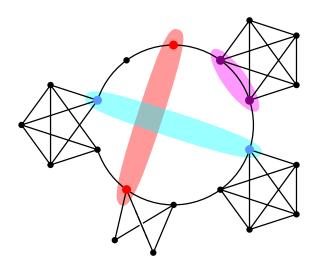
k = 2:



k = 2:

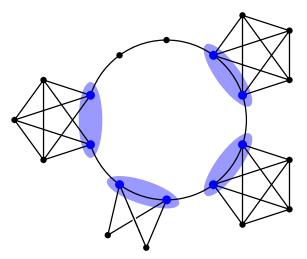


Two k-separators cross if they separate each other; otherwise they are nested.



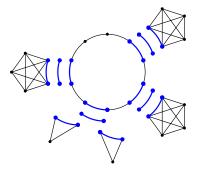
Two k-separators cross if they separate each other; otherwise they are nested.

A k-separator is *totally-nested* if it is nested with every k-separator.



Two k-separators cross if they separate each other; otherwise they are nested.

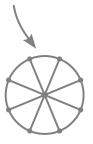
A k-separator is *totally-nested* if it is nested with every k-separator.



Theorem (Tutte 66), SPQR-trees

Every 2-con'd G decomposes along its totally-nested 2-separators into 3-con'd graphs, cycles and K_2 's.

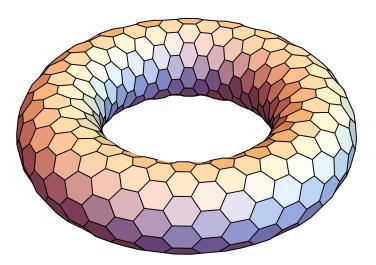
Guess



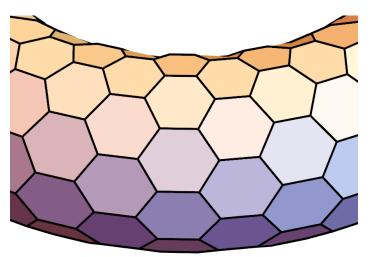
Theorem (Tutte 66), SPQR-trees

Every 2-con'd G decomposes along its totally-nested 2-separators into 3-con'd graphs, cycles and K_2 's.

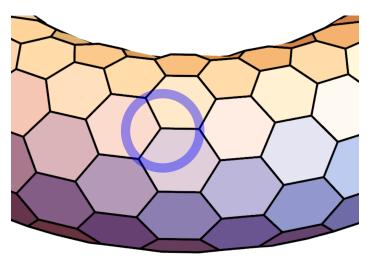
Guess



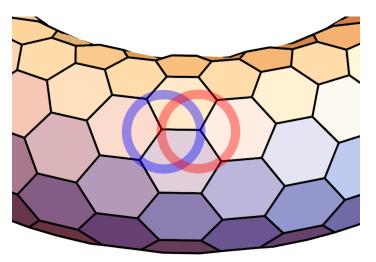
Guess



Guess

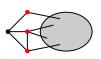


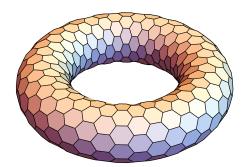
Guess



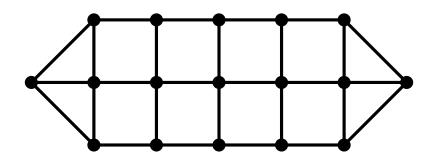
Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_3 's.

3-con'd, >4 vertices, every 3-separator has form

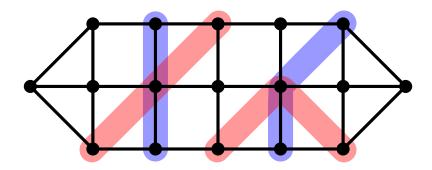




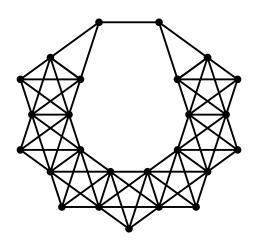
Guess



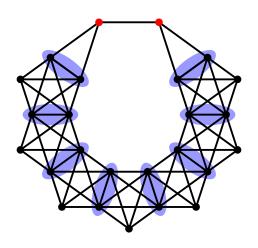
Guess



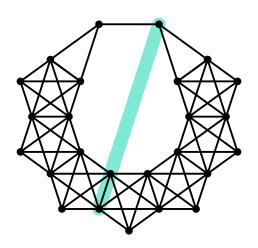
Guess



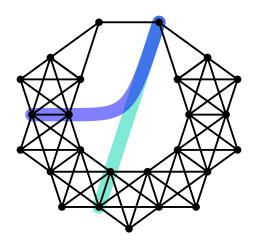
Guess



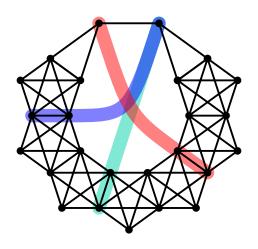
Guess

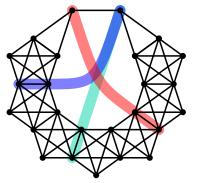


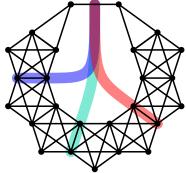
Guess

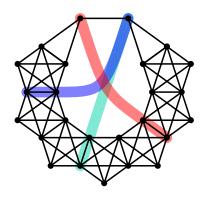


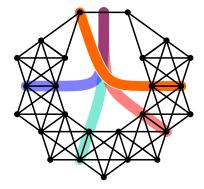
Guess

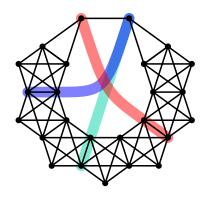


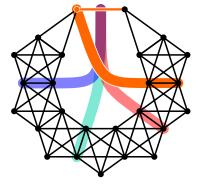


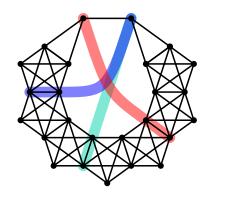


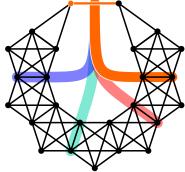


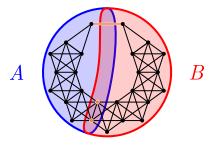




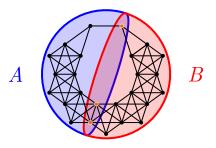




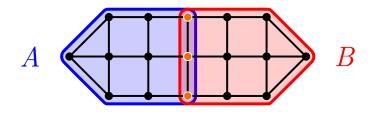




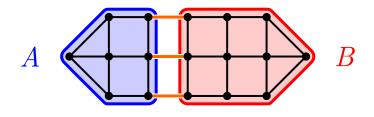
separator of $\{A, B\}$: $(A \cap B) \cup E(A \setminus B, B \setminus A)$



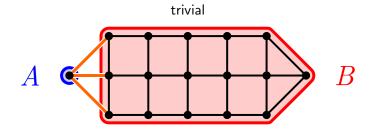
separator of $\{A,B\}$: $(A\cap B)\cup E(A\smallsetminus B,B\smallsetminus A)$



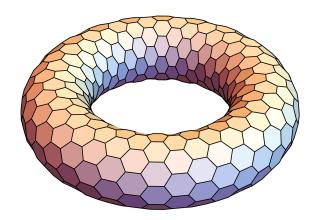
separator of $\{A,B\}$: $(A\cap B)\cup E(A\smallsetminus B,B\smallsetminus A)$

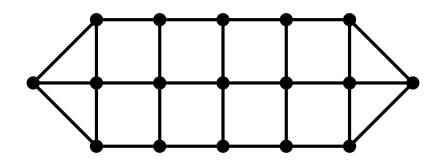


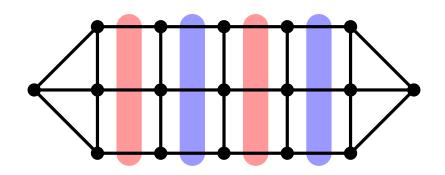
separator of $\{A,B\}$: $(A\cap B)\cup E(A\smallsetminus B,B\smallsetminus A)$

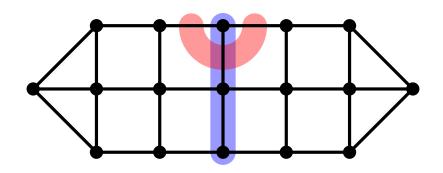


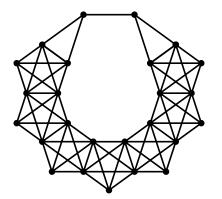
separator of $\{A,B\}$: $(A\cap B)\cup E(A\smallsetminus B,B\smallsetminus A)$

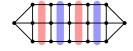


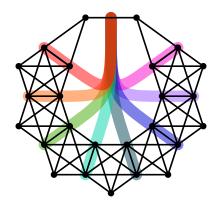


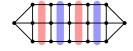




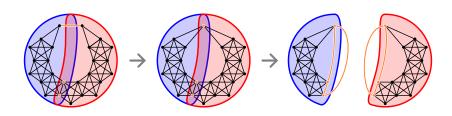


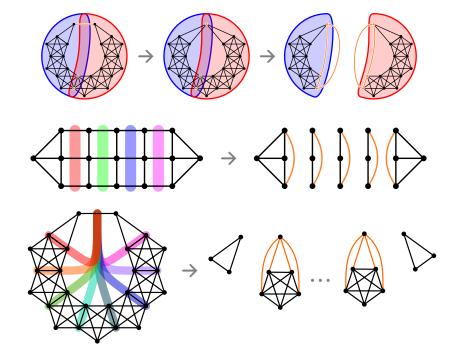






Decomposing along a tri-separation





Main result (Carmesin & K. 23)

Every 3-con'd ${\cal G}$ decomposes along its totally-nested nontrivial tri-separations into minors of ${\cal G}$ that are

- quasi 4-con'd
- wheels
- thickened $K_{3,m}$

or $G = K_{3,m} \ (m \geqslant 0)$.

m

recursive	method
3-separations	decomposition
K_4 ,	torsos
quasi 4-con'd, K_3	
no	canonical
$O(n^2(n+m))$	algorithm

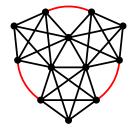
Grohe 16

Tutte (totally nested)
tri-separations
wheels,

quasi 4-con'd, thickened $K_{3,m}$ yes $\ref{eq:constraint}$

Carmesin & K. 23

Application: Connectivity Augmentation from 0 to 4



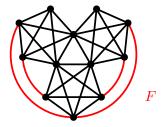
Theorem (Carmesin & Sridharan 23+)

 $\exists\operatorname{FPT-algorithm}$ with runtime $C(\ell)\cdot\operatorname{Poly}(\,|V(G)|\,)$ and

Input: Graph G, $\ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$

Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd

Application: Connectivity Augmentation from 0 to 4



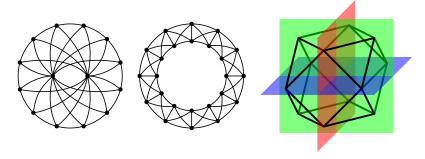
Theorem (Carmesin & Sridharan 23+)

 $\exists\operatorname{FPT-algorithm}$ with runtime $C(\ell)\cdot\operatorname{Poly}(\,|V(G)|\,)$ and

Input: Graph G, $\ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$

Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd

Open: Extend the main result to k-separations for $k \geqslant 4$.



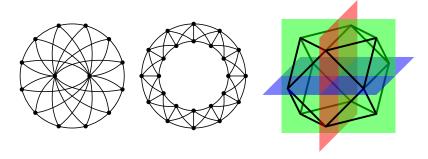
Open: Efficient algorithms?

Open: Directed graphs?

k=1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23

 $k \geqslant 2$: ???

Open: Extend the main result to k-separations for $k \geqslant 4$.



Open: Efficient algorithms?

Open: Directed graphs?

k=1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23

 $k \geqslant 2$: ???

Thank you!