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Decomposing along a tri-separation





Main result (Carmesin & K. 23)

Every 3-con’d G decomposes along its totally-nested nontrivial

tri-separations into minors of G that are

• quasi 4-con’d

• wheels

• thickened K3,m

or G = K3,m (m ⩾ 0).



Grohe 16 Carmesin & K. 23

method recursive Tutte (totally nested)

decomposition 3-separations tri-separations

torsos K4, wheels,

quasi 4-con’d, K3 quasi 4-con’d, thickened K3,m

canonical no yes

algorithm O(n2(n+m)) ???



Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 23+)

∃FPT-algorithm with runtime C(ℓ) · Poly( |V (G)| ) and
Input: Graph G, ℓ ∈ N and F ⊆ E(G )

Output: No, or ⩽ ℓ-sized X ⊆ F such that G+X is 4-con’d
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Thank you!


