#### A Combinatorial Journey to the Challenger Deep of Mathematics

Jan Kurkofka



#### Social networks



















### graph



## graph



#### Infrastructure



#### Maths!



Dodecahedron



Farey graph



Petersen graph

#### Which graphs can be drawn in the plane so that no two edges cross?

are planar



# graph

# graph

v planar?



yes!











•

 $K_{\cdot}$ 











Find a nonplanar graph



#### Euler's formula (1752)

For every planar drawing of a connected graph with n vertices and m edges:

$$n-m+\ell=2$$

where  $\ell$  is the number of faces of the drawing.

faces: connected regions of the plane minus the drawing



$$egin{array}{lll} n&=&4 \ m&=&6 \ \ell&=&4 \end{array}$$



#### Euler's formula (1752)

For every planar drawing of a connected graph with n vertices and m edges:

$$n - m + \ell = 2$$

where  $\ell$  is the number of faces of the drawing.

faces: connected regions of the plane minus the drawing



Corollary A. Every triangulation of the plane with n vertices has 3n-6 edges. Proof.



Corollary A. Every triangulation of the plane with n vertices has 3n-6 edges. Proof.











#green edges







two perspectives  $3\ell = \# \text{green edges} = 2m$ 





 $\ell = \frac{2}{3}m$ 

Euler's formula:  $n-m+\ell=2$ 



$$\ell = \frac{2}{3}m$$

Euler's formula:  $n-m+\ell=2$  $\stackrel{(*)}{\Longrightarrow} n - m + \frac{2}{3}m = 2$ 

$$\stackrel{(*)}{\Longrightarrow}$$



$$\ell = \frac{2}{3}m$$

$$\stackrel{(*)}{\Longrightarrow} n - m + \frac{2}{3}m = 2$$

$$\Longrightarrow n - \frac{1}{3}m = 2$$

Euler's formula:  $n-m+\ell=2$ 



$$\ell = \frac{2}{3}m$$

Euler's formula: 
$$n-m+\ell=2$$
  $\Longrightarrow n-m+\frac{2}{3}m=2$   $\Longrightarrow n-\frac{1}{3}m=2$   $\Longrightarrow n-2=\frac{1}{3}m$ 



$$(*) \qquad \qquad \ell = \frac{2}{3}m$$

Euler's formula:  $n-m+\ell=2$   $\stackrel{(*)}{\Longrightarrow} n-m+\frac{2}{3}m=2$   $\stackrel{n}{\Longrightarrow} n-m+\frac{2}{3}m=2$ 

$$\implies n - \frac{1}{3}m = 2$$

$$\implies \qquad n-2 = \frac{1}{3}m$$

$$\implies \qquad 3n-6 = m$$

$$\implies$$
  $3n-0 = r$ 



$$\ell = \frac{2}{3}m$$

Euler's formula:  $n-m+\ell=2$   $\Longrightarrow n-m+\frac{2}{3}m=2$ 

$$\implies \qquad n - \frac{1}{3}m = 2$$

$$\implies n - 2 = \frac{1}{3}m$$

$$\implies$$
  $3n-6 = m$ 

ш



Proof.



is not planar.

Proof. Assume for a contradiction that  $K_5$  is planar.



is not planar.

Proof. Assume for a contradiction that  $K_{\mathbf{5}}$  is planar.

Draw it!



is not planar.

Proof. Assume for a contradiction that  $K_5$  is planar.

Draw it! Without proof: every face is bounded by a cycle  $\sqrt{\phantom{a}}$ 





is not planar.

Proof. Assume for a contradiction that  $K_5$  is planar.

Draw it! Without proof: every face is bounded by a cycle





Corollary B.  $K_5$  is not planar.

Proof. Assume for a contradiction that  $K_5$  is planar.

Draw it! Without proof: every face is bounded by a cycle







Corollary B.  $K_5$  is not planar.

Proof. Assume for a contradiction that  $K_5$  is planar.

Draw it! Without proof: every face is bounded by a cycle







Corollary B.  $K_5$  is not planar.

Proof. Assume for a contradiction that  $K_5$  is planar.

Draw it! Without proof: every face is bounded by a cycle







Proof. Assume for a contradiction that  $K_5$  is planar.

Draw it! Without proof: every face is bounded by a cycle This is a triangulation.



Corollary A says  $K_5$  has  $3n-6=3\cdot 5-6=9$  edges.



 $f_5$   $\qquad$  is not planar

Proof. Assume for a contradiction that  $K_5$  is planar.

Draw it! Without proof: every face is bounded by a cycle



This is a triangulation.

Corollary A says  $K_5$  has  $3n-6=3\cdot 5-6=9$  edges.

But  $K_5$  has  $\binom{5}{2} = 10$  edges, contradiction.

 $K_5$  is not planar. Are there other nonplanar graphs?



 $K_5$  is not planar. Are there other nonplanar graphs? Yes!



A graph H is a subgraph of a graph G if H can be obtained from G by successively deleting edges or isolated vertices.



Fact. Subgraphs of planar graphs are planar.

A graph H is a subgraph of a graph G if H can be obtained from G by successively deleting edges or isolated vertices.



Fact. Subgraphs of planar graphs are planar.

Conjecture. Every nonplanar graph contains  $K_5$  as a subgraph.



# Is the right graph planar?

Does the right graph contain  $K_5$  as a subgraph?





A graph H is a *minor* of a graph G if H can be obtained from G by successively deleting edges or isolated vertices or contracting edges.



Fact. Minors of planar graphs are planar.

Conjecture. Every nonplanar graph contains  $K_5$  as a minor.







## Kuratowski's theorem (1930)

For every graph G, the following assertions are equivalent:

- *G* is planar;
- G contains neither  $K_5$  nor  $K_{3,3}$  as a minor.









Is there a Kuratowski-type theorem for the torus?



Is there a planar drawing of  $K_5$  on the torus?

Is there a planar drawing of  $K_{\rm 5}$  on the torus?



# Are there Kuratowski-type theorems for other surfaces?



### Conjecture (allegedly Wagner, 1960s)

For **every** graph-property  $\mathcal{P}$  that is closed under taking minors

Tor every graph property / that is closed under taking minors



For **every** graph-property  $\mathcal{P}$  that is closed under taking minors



there exist **finitely many** graphs  $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.

| mine | or-closed graph-property ${\cal P}$ | excluded minors $X_1,\ldots,X_k$ |
|------|-------------------------------------|----------------------------------|
|      | planar                              |                                  |

| minor-closed graph-property ${\cal P}$ | excluded minors $X_1, \dots, X_k$ |
|----------------------------------------|-----------------------------------|
| planar                                 |                                   |
| forest                                 |                                   |

| minor-closed graph-property ${\cal P}$ | excluded minors $X_1, \dots, X_k$ |
|----------------------------------------|-----------------------------------|
| planar                                 |                                   |
| forest                                 | $\triangle$                       |

| minor-closed graph-property ${\mathcal P}$ | excluded minors $X_1,\ldots,X_k$ |
|--------------------------------------------|----------------------------------|
| planar                                     |                                  |
| forest                                     | $\triangle$                      |
| linkless                                   |                                  |

| minor-closed graph-property ${\cal P}$ | excluded minors $X_1, \ldots, X_k$ |
|----------------------------------------|------------------------------------|
| planar                                 |                                    |
| forest                                 | $\triangle$                        |
| linkless                               |                                    |

| minor-closed graph-property ${\cal P}$     | excluded minors $X_1, \dots, X_k$ |
|--------------------------------------------|-----------------------------------|
| planar                                     |                                   |
| forest                                     |                                   |
| linkless                                   |                                   |
| planar after deleting $\leqslant 1$ vertex |                                   |

| minor-closed graph-property ${\mathcal P}$ | excluded minors $X_1,\ldots,X_k$ |
|--------------------------------------------|----------------------------------|
| planar                                     |                                  |
| forest                                     |                                  |
| linkless                                   |                                  |
| planar after deleting $\leqslant 1$ vertex | ???                              |

| minor-closed graph-property ${\mathcal P}$ | excluded minors $X_1,\ldots,X_k$ |
|--------------------------------------------|----------------------------------|
| planar                                     |                                  |
| forest                                     | $\triangle$                      |
| linkless                                   |                                  |
| planar after deleting $\leqslant 1$ vertex | ??? ≥ 157                        |

| minor-closed graph-property ${\cal P}$     | excluded minors $X_1,\ldots,X_k$ |
|--------------------------------------------|----------------------------------|
| planar                                     |                                  |
| forest                                     | $\triangle$                      |
| linkless                                   |                                  |
| planar after deleting $\leqslant 1$ vertex | ??? ≥ 157                        |
| torus 🔵                                    |                                  |

| minor-closed graph-property ${\cal P}$     | excluded minors $X_1,\ldots,X_k$ |
|--------------------------------------------|----------------------------------|
| planar                                     |                                  |
| forest                                     | $\triangle$                      |
| linkless                                   |                                  |
| planar after deleting $\leqslant 1$ vertex | ??? ≥ 157                        |
| torus 🕙                                    | ???                              |

| minor-closed graph-property ${\cal P}$     | excluded minors $X_1,\ldots,X_k$ |
|--------------------------------------------|----------------------------------|
| planar                                     |                                  |
| forest                                     | $\triangle$                      |
| linkless                                   |                                  |
| planar after deleting $\leqslant 1$ vertex | ??? ≥ 157                        |
| torus 🥥                                    | $??? \geqslant 17,523$           |

For **every** minor-closed graph-property  $\mathcal{P}$  there exist **finitely many** graphs  $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.





Neil Robertson

Paul Seymour

For **every** minor-closed graph-property  $\mathcal{P}$  there exist **finitely many** graphs  $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.



1983-2004



Neil Robertson

Paul Seymour

For **every** minor-closed graph-property  $\mathcal{P}$  there exist **finitely many** graphs  $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.



1983–2004 20 papers



Neil Robertson

Paul Seymour

For **every** minor-closed graph-property  $\mathcal{P}$  there exist **finitely many** graphs  $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.



1983-2004 20 papers > 500 pages



Neil Robertson

Paul Seymour

For **every** minor-closed graph-property  $\mathcal{P}$  there exist **finitely many** graphs  $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.



1983-2004 20 papers > 500 pages



Neil Robertson

Paul Seymour

For every minor-closed graph-property  $\mathcal P$  there exist finitely many graphs

 $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.



1983-2004 20 papers > 500 pages



Neil Robertson Paul Seymour

**Corollary.** For every minor-closed graph-property there exists an efficient (cubic time) algorithm for testing whether a given graph exhibits the property.

For **every** minor-closed graph-property  ${\mathcal P}$  there exist **finitely many** graphs

 $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.

### Active research

- Graph-Minor Theorem for matroids (write-up phase)
- Graph-Minor Theorem for directed graphs
- Given an explicit  $\mathcal{P}$ , find  $X_1, \ldots, X_k$  explicitly
- Algorithms to compute  $X_1, \ldots, X_k$  given  $\mathcal{P}$





For **every** minor-closed graph-property  ${\mathcal P}$  there exist **finitely many** graphs

 $X_1, \ldots, X_k$  such that the following assertions are equivalent:

- G exhibits the property  $\mathcal{P}$ ;
- G contains none of the graphs  $X_1, \ldots, X_k$  as a minor.

### Active research

- Graph-Minor Theorem for matroids (write-up phase)
- Graph-Minor Theorem for directed graphs
- Given an explicit  $\mathcal{P}$ , find  $X_1, \ldots, X_k$  explicitly
- Algorithms to compute  $X_1, \ldots, X_k$  given  $\mathcal{P}$





Thank you!