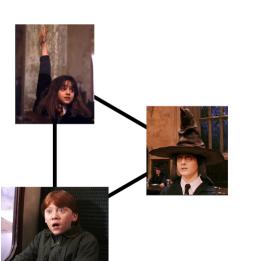
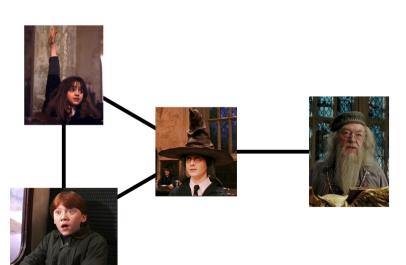
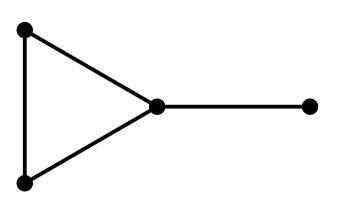

A Combinatorial Journey to the Challenger Deep of Mathematics

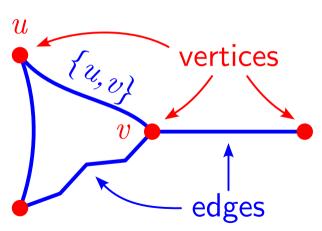
Jan Kurkofka

Social networks

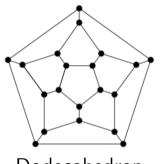


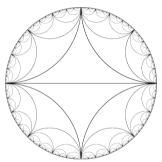


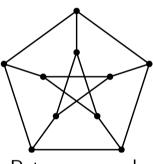




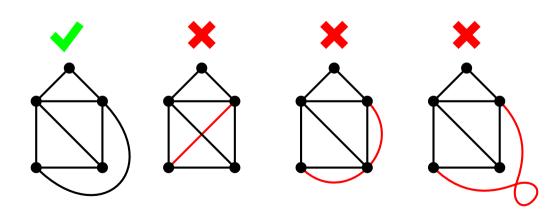
graph


graph


Infrastructure

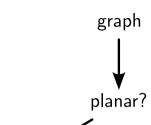

Maths!

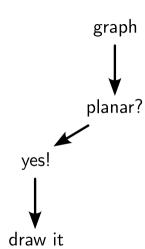
Dodecahedron

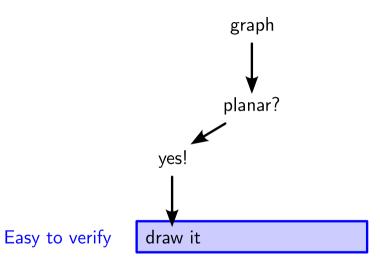

Farey graph

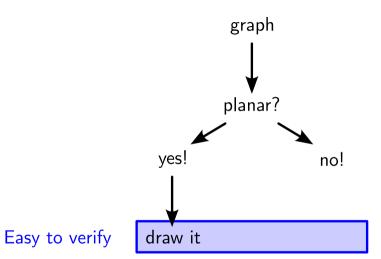
Petersen graph

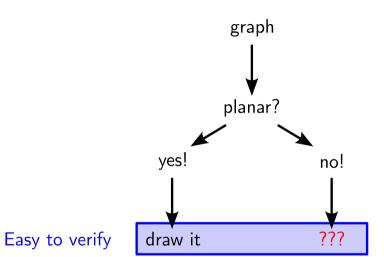
Which graphs can be drawn in the plane so that no two edges cross?

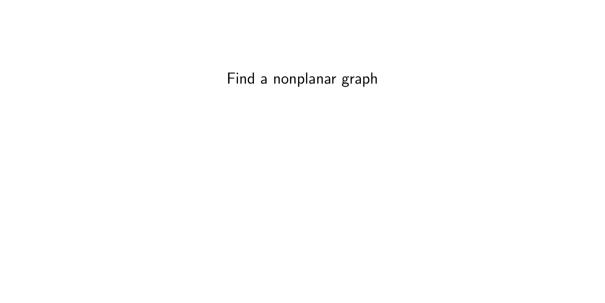

are planar

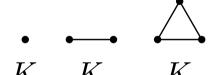

graph

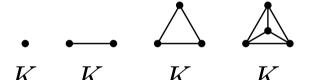

graph

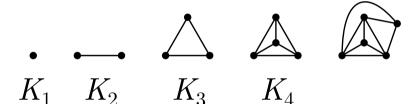

v planar?

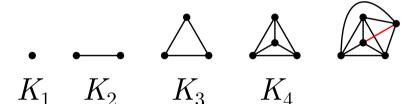


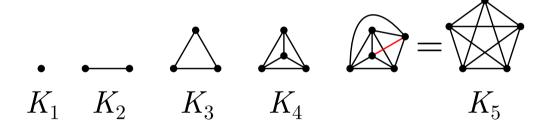

yes!






•


 K_{\cdot}



Find a nonplanar graph

Euler's formula (1752)

For every planar drawing of a connected graph with n vertices and m edges:

$$n-m+\ell=2$$

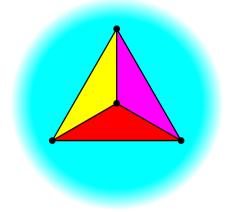
where ℓ is the number of faces of the drawing.

faces: connected regions of the plane minus the drawing

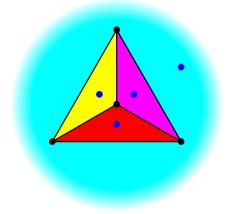
$$egin{array}{lll} n&=&4 \ m&=&6 \ \ell&=&4 \end{array}$$

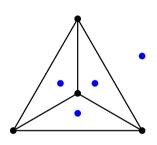
Euler's formula (1752)

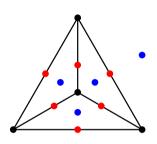
For every planar drawing of a connected graph with n vertices and m edges:

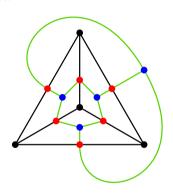

$$n - m + \ell = 2$$

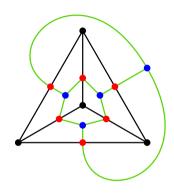
where ℓ is the number of faces of the drawing.

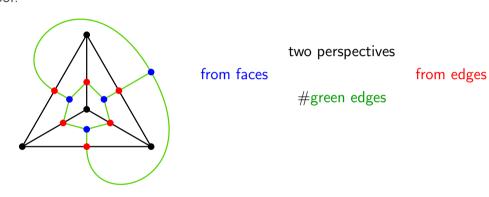

faces: connected regions of the plane minus the drawing

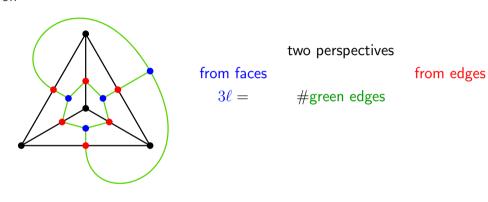


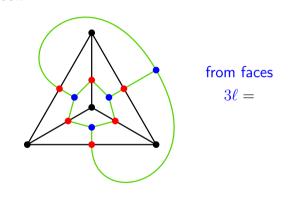

Corollary A. Every triangulation of the plane with n vertices has 3n-6 edges. Proof.

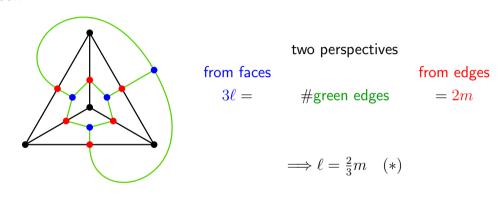


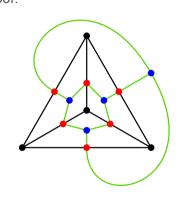

Corollary A. Every triangulation of the plane with n vertices has 3n-6 edges. Proof.

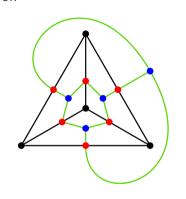




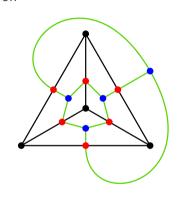



#green edges




two perspectives $3\ell = \# \text{green edges} = 2m$

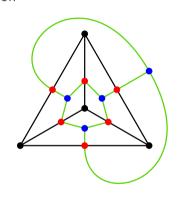
 $\ell = \frac{2}{3}m$


Euler's formula: $n-m+\ell=2$

$$\ell = \frac{2}{3}m$$

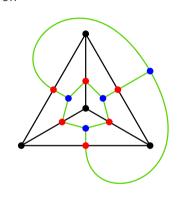
Euler's formula: $n-m+\ell=2$ $\stackrel{(*)}{\Longrightarrow} n - m + \frac{2}{3}m = 2$

$$\stackrel{(*)}{\Longrightarrow}$$



$$\ell = \frac{2}{3}m$$

$$\stackrel{(*)}{\Longrightarrow} n - m + \frac{2}{3}m = 2$$

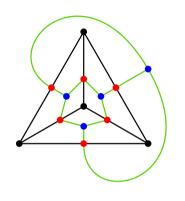

$$\Longrightarrow n - \frac{1}{3}m = 2$$

Euler's formula: $n-m+\ell=2$

$$\ell = \frac{2}{3}m$$

Euler's formula:
$$n-m+\ell=2$$
 $\Longrightarrow n-m+\frac{2}{3}m=2$ $\Longrightarrow n-\frac{1}{3}m=2$ $\Longrightarrow n-2=\frac{1}{3}m$

$$(*) \qquad \qquad \ell = \frac{2}{3}m$$


Euler's formula: $n-m+\ell=2$ $\stackrel{(*)}{\Longrightarrow} n-m+\frac{2}{3}m=2$ $\stackrel{n}{\Longrightarrow} n-m+\frac{2}{3}m=2$

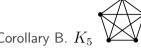
$$\implies n - \frac{1}{3}m = 2$$

$$\implies \qquad n-2 = \frac{1}{3}m$$

$$\implies \qquad 3n-6 = m$$

$$\implies$$
 $3n-0 = r$

$$\ell = \frac{2}{3}m$$


Euler's formula: $n-m+\ell=2$ $\Longrightarrow n-m+\frac{2}{3}m=2$

$$\implies \qquad n - \frac{1}{3}m = 2$$

$$\implies n - 2 = \frac{1}{3}m$$

$$\implies$$
 $3n-6 = m$

ш

Proof.

is not planar.

Proof. Assume for a contradiction that K_5 is planar.

is not planar.

Proof. Assume for a contradiction that $K_{\mathbf{5}}$ is planar.

Draw it!

is not planar.

Proof. Assume for a contradiction that K_5 is planar.

Draw it! Without proof: every face is bounded by a cycle $\sqrt{}$

is not planar.

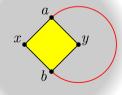
Proof. Assume for a contradiction that K_5 is planar.

Draw it! Without proof: every face is bounded by a cycle

Corollary B. K_5 is not planar.

Proof. Assume for a contradiction that K_5 is planar.

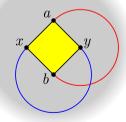
Draw it! Without proof: every face is bounded by a cycle



Corollary B. K_5 is not planar.

Proof. Assume for a contradiction that K_5 is planar.

Draw it! Without proof: every face is bounded by a cycle



Corollary B. K_5 is not planar.

Proof. Assume for a contradiction that K_5 is planar.

Draw it! Without proof: every face is bounded by a cycle

Proof. Assume for a contradiction that K_5 is planar.

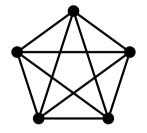
Draw it! Without proof: every face is bounded by a cycle This is a triangulation.

Corollary A says K_5 has $3n-6=3\cdot 5-6=9$ edges.

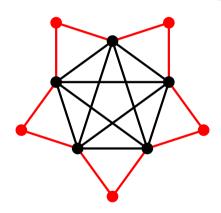
 f_5 \qquad is not planar

Proof. Assume for a contradiction that K_5 is planar.

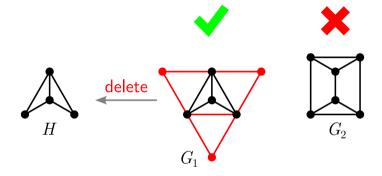
Draw it! Without proof: every face is bounded by a cycle



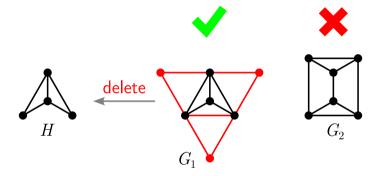
This is a triangulation.


Corollary A says K_5 has $3n-6=3\cdot 5-6=9$ edges.

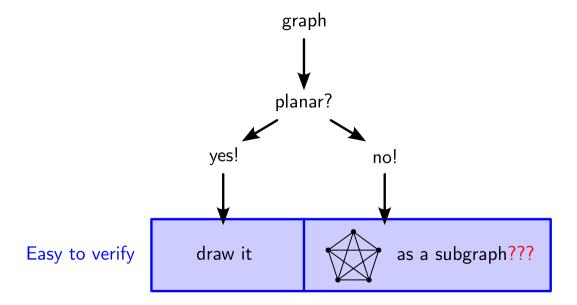
But K_5 has $\binom{5}{2} = 10$ edges, contradiction.


 K_5 is not planar. Are there other nonplanar graphs?

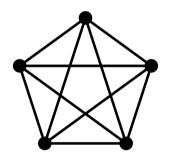
 K_5 is not planar. Are there other nonplanar graphs? Yes!

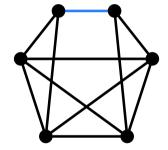


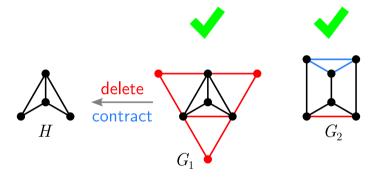
A graph H is a subgraph of a graph G if H can be obtained from G by successively deleting edges or isolated vertices.


Fact. Subgraphs of planar graphs are planar.

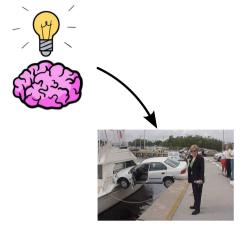
A graph H is a subgraph of a graph G if H can be obtained from G by successively deleting edges or isolated vertices.

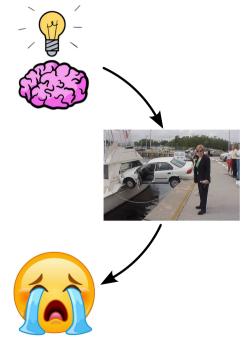

Fact. Subgraphs of planar graphs are planar.


Conjecture. Every nonplanar graph contains K_5 as a subgraph.


Is the right graph planar?

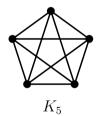
Does the right graph contain K_5 as a subgraph?

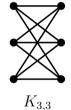

A graph H is a *minor* of a graph G if H can be obtained from G by successively deleting edges or isolated vertices or contracting edges.



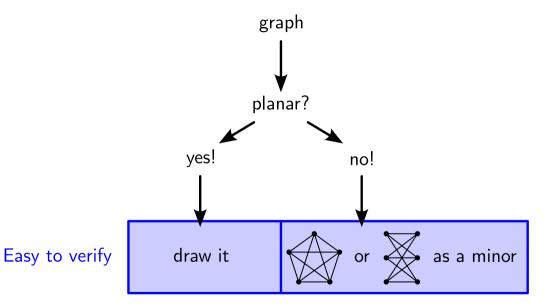
Fact. Minors of planar graphs are planar.

Conjecture. Every nonplanar graph contains K_5 as a minor.

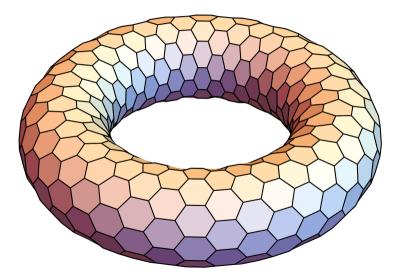


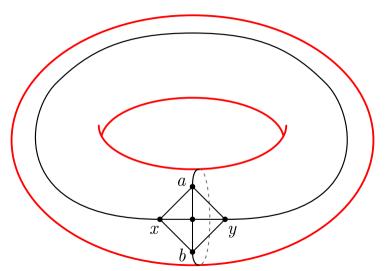


Kuratowski's theorem (1930)

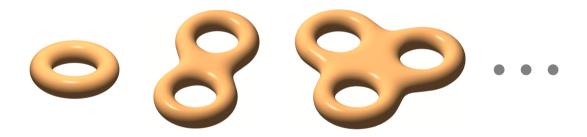

For every graph G, the following assertions are equivalent:

- *G* is planar;
- G contains neither K_5 nor $K_{3,3}$ as a minor.



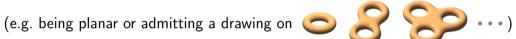


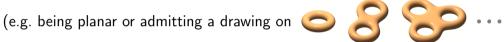
Is there a Kuratowski-type theorem for the torus?



Is there a planar drawing of K_5 on the torus?

Is there a planar drawing of $K_{\rm 5}$ on the torus?


Are there Kuratowski-type theorems for other surfaces?


Conjecture (allegedly Wagner, 1960s)

For **every** graph-property \mathcal{P} that is closed under taking minors

Tor every graph property / that is closed under taking minors

For **every** graph-property \mathcal{P} that is closed under taking minors

there exist **finitely many** graphs X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

mine	or-closed graph-property ${\cal P}$	excluded minors X_1,\ldots,X_k
	planar	

minor-closed graph-property ${\cal P}$	excluded minors X_1, \dots, X_k
planar	
forest	

minor-closed graph-property ${\cal P}$	excluded minors X_1, \dots, X_k
planar	
forest	\triangle

minor-closed graph-property ${\mathcal P}$	excluded minors X_1,\ldots,X_k
planar	
forest	\triangle
linkless	

minor-closed graph-property ${\cal P}$	excluded minors X_1, \ldots, X_k
planar	
forest	\triangle
linkless	

minor-closed graph-property ${\cal P}$	excluded minors X_1, \dots, X_k
planar	
forest	
linkless	
planar after deleting $\leqslant 1$ vertex	

minor-closed graph-property ${\mathcal P}$	excluded minors X_1,\ldots,X_k
planar	
forest	
linkless	
planar after deleting $\leqslant 1$ vertex	???

minor-closed graph-property ${\mathcal P}$	excluded minors X_1,\ldots,X_k
planar	
forest	\triangle
linkless	
planar after deleting $\leqslant 1$ vertex	??? ≥ 157

minor-closed graph-property ${\cal P}$	excluded minors X_1,\ldots,X_k
planar	
forest	\triangle
linkless	
planar after deleting $\leqslant 1$ vertex	??? ≥ 157
torus 🔵	

minor-closed graph-property ${\cal P}$	excluded minors X_1,\ldots,X_k
planar	
forest	\triangle
linkless	
planar after deleting $\leqslant 1$ vertex	??? ≥ 157
torus 🕙	???

minor-closed graph-property ${\cal P}$	excluded minors X_1,\ldots,X_k
planar	
forest	\triangle
linkless	
planar after deleting $\leqslant 1$ vertex	??? ≥ 157
torus 🥥	$??? \geqslant 17,523$

For **every** minor-closed graph-property \mathcal{P} there exist **finitely many** graphs X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

Neil Robertson

Paul Seymour

For **every** minor-closed graph-property \mathcal{P} there exist **finitely many** graphs X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

1983-2004

Neil Robertson

Paul Seymour

For **every** minor-closed graph-property \mathcal{P} there exist **finitely many** graphs X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

1983–2004 20 papers

Neil Robertson

Paul Seymour

For **every** minor-closed graph-property \mathcal{P} there exist **finitely many** graphs X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

1983-2004 20 papers > 500 pages

Neil Robertson

Paul Seymour

For **every** minor-closed graph-property \mathcal{P} there exist **finitely many** graphs X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

1983-2004 20 papers > 500 pages

Neil Robertson

Paul Seymour

For every minor-closed graph-property $\mathcal P$ there exist finitely many graphs

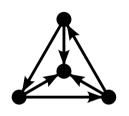
 X_1, \ldots, X_k such that the following assertions are equivalent:

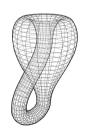
- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

1983-2004 20 papers > 500 pages

Neil Robertson Paul Seymour

Corollary. For every minor-closed graph-property there exists an efficient (cubic time) algorithm for testing whether a given graph exhibits the property.

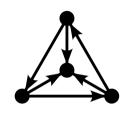

For **every** minor-closed graph-property ${\mathcal P}$ there exist **finitely many** graphs

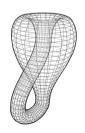

 X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

Active research

- Graph-Minor Theorem for matroids (write-up phase)
- Graph-Minor Theorem for directed graphs
- Given an explicit \mathcal{P} , find X_1, \ldots, X_k explicitly
- Algorithms to compute X_1, \ldots, X_k given \mathcal{P}


For **every** minor-closed graph-property ${\mathcal P}$ there exist **finitely many** graphs


 X_1, \ldots, X_k such that the following assertions are equivalent:

- G exhibits the property \mathcal{P} ;
- G contains none of the graphs X_1, \ldots, X_k as a minor.

Active research

- Graph-Minor Theorem for matroids (write-up phase)
- Graph-Minor Theorem for directed graphs
- Given an explicit \mathcal{P} , find X_1, \ldots, X_k explicitly
- Algorithms to compute X_1, \ldots, X_k given \mathcal{P}

Thank you!