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Jan Kurkofka




Social networks
















graph

vertices

Sy N,
\edles




graph

vertices

Ly N,
\edles




Infrastructure




Dodecahedron Faré;*éfa ph Petersen graph



Which graphs can be drawn in the plane so that no two edges cross?

are planar
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Euler's formula (1752)
For every planar drawing of a connected graph with n vertices and m edges:

n—m-+¥0=2

where £ is the number of faces of the drawing.

faces: connected regions of the plane minus the drawing
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Corollary A. Every triangulation of the plane with n vertices has 3n — 6 edges.

Corollary B. K5 @ is not planar.

Proof. Assume for a contradiction that K is planar.
Draw it! Without proof: every face is bounded by a cycle Q
This is a triangulation.

Corollary A says K5 has 3n —6=3-5—6 =9 edges.

But K5 has (g) = 10 edges, contradiction.
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K3 is not planar. Are there other nonplanar graphs? Yes!




A graph H is a subgraph of a graph G if H can be obtained from G by
successively deleting edges or isolated vertices.
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Fact. Subgraphs of planar graphs are planar.

Conjecture. Every nonplanar graph contains K5 as a subgraph.
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Is the right graph planar?

Does the right graph contain K5 as a subgraph?




A graph H is a minor of a graph G if H can be obtained from G by
successively deleting edges or isolated vertices or contracting edges.
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Fact. Minors of planar graphs are planar.

Conjecture. Every nonplanar graph contains K5 as a minor.
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Kuratowski's theorem (1930)
For every graph (G, the following assertions are equivalent:

e (G is planar;

e ( contains neither K5 nor K33 as a minor.
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Is there a Kuratowski-type theorem for the torus?




Is there a planar drawing of K5 on the torus?
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Are there Kuratowski-type theorems for other surfaces?
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there exist finitely many graphs X1, ..., X} such that the following assertions

are equivalent:
e (G exhibits the property P;

e (G contains none of the graphs X, ..., X, as a minor.
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Corollary. For every minor-closed graph-property there exists an efficient (cubic

time) algorithm for testing whether a given graph exhibits the property.
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Xy, ..., Xy such that the following assertions are equivalent:

e ( exhibits the property P;
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Active research
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Thank you!



