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Problem: Decompose k-con'd G along k-separators
into parts that are (k + 1)-con’d or ‘basic’.

Decomposing G along a k-separator:
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Theorem (Tutte 66), SPQR-trees
Every 2-con'd G decomposes along its totally-nested 2-separators

into 3-con'd graphs, cycles and K5's.



e canonical: isomorphisms map parts to parts

o tree-decomposition (for fans)
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3-con'd and every 3-separator has form @




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.

Lel ..
N\

AN
AV



Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess
Every 3-con'd G decomposes along its totally-nested 3-separators

into quasi 4-con'd graphs, wheels and K3's.




Guess

Every 3-con'd G decomposes along its totally-nested 3-separators
into quasi 4-con'd graphs, wheels and K3's.

e el
NV N2



mixed-separation of G: (A, B) with AU B =V (G) and
A, B #V(G)

separator of (A,B): (ANB)UE(ANB,B~\A)

A tri-separation of G is a mixed-sep'n (A, B) with [sep'r| = 3 s.t.
every vx in AN B has > 2 neighb's in A and B.
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mixed-separation of G: (A, B) with AU B =V (G) and
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(A, B) and (C, D) are nested if AC C and B2 D
after possibly switching A with B or C with D;

otherwise they cross.

nested crossing
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totally-nested nontrivial tri-separations
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Decomposing along a tri-separation
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Theorem (Carmesin & K. 23)
Every 3-con'd G decomposes along its totally-nested nontrivial

tri-separations into parts that are

e quasi 4-con'd

e wheels

e thickened K3,, — >



e canonical v/

e for tree-decomposition fans:

mixed-tree-decomposition torsos
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Challenge 1: Torus-example for k& > 3
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Challenge 1: Torus-example for k& > 3

quasi-k-connected: k-con'd and every k-sep'r cuts off < 1 vertex
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Challenge 2

Verbatim extension of tri-sep’ns to k = 4:
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Verbatim extension of tri-sep’ns to k = 4:
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Challenge 2

Verbatim extension of tri-sep’ns to k = 4:
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A tetra-separation is a mixed-sep'n (A, B) with |sep’r| =4 s.t.

e every vx in AN B has > 2 neighb’sin AN Band B\ A

e the edges in the sep'r form a matching



A tetra-separation is a mixed-sep'n (A4, B) with [sep’r| = 4 s.t.:
e every vx in AN B has > 2 neighb’sin AN Band B\ A

e the edges in the sep'r form a matching
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Main result (K. & Planken 25)

Every 4-con'd G decomposes along its totally-nested
tetra-separations into parts that are

e quasi 5-con'd e thickened Ky,

e generalised double-wheels e cycle of triangles and 3-con'd

graphs on < 5 vxs.
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canonical Y-A transformation
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Problem:  Classify all vertex-transitive finite con'd G



Problem:  Classify all vertex-transitive finite con'd G

Approach:  Low connectivity first



Theorem (Carmesin & K. 23)

Every vertex-transitive finite con'd G is either
e acycle, Ko, Kj,
e quasi-4-con'd, or

e K3-expansion of a quasi-4-con'd 3-regular arc-transitive graph.




Theorem (K. & Planken 25)
Every quasi-4-con’d vertex-transitive finite GG is either

bagel-like,

cube-like,

e quasi-b-con'd, or

K4 /Cy-expansion of quasi-5-con'd 4-regular arc-transitive graph.
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Application: Connectivity Augmentation from O to 4

Theorem (Carmesin & Sridharan 25+)
JFPT-algorithm with runtime C(¢) - Poly( |V (G)]) and

Input: Graph G, ¢ € Nand F C E(G)
Output:  No, or </f-sized X C F such that G + X is 4-con'd
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Proof of tetra-decomposition
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Crossing Lemma. Tetra-sep’ns only cross symmetrically:
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(A, B) totally-nested
<= the sep'r of (A, B) is highly con'd:
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Open: Extend the main result to all k.

Open: Directed graphs?
k = 1. Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23
k>2: 77



Tetra-separation: mixed-sep'n (A, B) with |sep'r| = 4 such that
every vx in AN B has > 2 neighb's in A~ B and in B\ A4,
and cross-edges form matching.

Main result (K. & Planken 25)
Every 4-con'd G decomposes along its totally-nested tetra-sep’ns
into parts that are quasi-5-con'd, thickened K4 ,,'s,
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Open: Graphs for k > 5. Digraphs for k >

or
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