A Tutte-type canonical decomposition of 3- and 4-connected graphs

Joint work with Tim Planken

Ukrainian Summer School in Combinatorics 2025

Decomposing G along a k-separator:

k = 1:

k = 2:

k = 2:

k = 2:

Two k-separators cross if they separate each other; otherwise they are nested.

Two k-separators cross if they separate each other; otherwise they are nested.

A k-separator is *totally-nested* if it is nested with every k-separator.

Two k-separators cross if they separate each other; otherwise they are nested.

A k-separator is *totally-nested* if it is nested with every k-separator.

Theorem (Tutte 66), SPQR-trees

- canonical: isomorphisms map parts to parts
- tree-decomposition (for fans)

Theorem (Tutte 66), SPQR-trees

Guess

Theorem (Tutte 66), SPQR-trees

Guess

Guess

Guess

Guess

Guess

Every 3-con'd G decomposes along its totally-nested 3-separators into quasi 4-con'd graphs, wheels and K_3 's.

3-con'd and every 3-separator has form

Guess

Guess

Guess

Guess

Guess

Guess

Guess

Guess

mixed-separation of $G\colon\quad (A,B)$ with $A\cup B=V(G)$ and $A,B\neq V(G)$

separator of (A,B): $(A\cap B)\cup E(A\smallsetminus B,B\smallsetminus A)$

mixed-separation of G: (A,B) with $A \cup B = V(G)$ and $A,B \neq V(G)$

separator of (A,B): $(A\cap B)\cup E(A\smallsetminus B,B\smallsetminus A)$

mixed-separation of
$$G\colon\quad (A,B)$$
 with $A\cup B=V(G)$ and
$$A,B\neq V(G)$$

separator of
$$(A,B)$$
: $(A\cap B)\cup E(A\smallsetminus B, B\smallsetminus A)$

mixed-separation of G: (A,B) with $A\cup B=V(G)$ and $A,B\neq V(G)$

separator of (A,B): $(A\cap B)\cup E(A\smallsetminus B, B\smallsetminus A)$

mixed-separation of $G\colon\quad (A,B)$ with $A\cup B=V(G)$ and $A,B\neq V(G)$

separator of
$$(A,B)$$
: $(A\cap B)\cup E(A\smallsetminus B,B\smallsetminus A)$

(A,B) and (C,D) are *nested* if $A\subseteq C$ and $B\supseteq D$ after possibly switching A with B or C with D; otherwise they *cross*.

Decomposing along a tri-separation

Theorem (Carmesin & K. 23)

Every 3-con'd ${\cal G}$ decomposes along its totally-nested nontrivial tri-separations into parts that are

- quasi 4-con'd
- wheels
- thickened $K_{3,m}$

3

m

- canonical √
- for tree-decomposition fans:

mixed-tree-decomposition

torsos

Challenge 1: Torus-example for $k\geqslant 3$

Challenge 1: Torus-example for $k\geqslant 3$

Challenge 1: Torus-example for $k\geqslant 3$

quasi-k-connected: k-con'd and every k-sep'r cuts off $\leqslant 1$ vertex

 $k \, \operatorname{odd}$

 ${\rm red:}\ \lfloor k/2 \rfloor {\rm -cliques}$

blue: $\lceil k/2 \rceil$ -cliques

 $k \, \operatorname{odd}$

red: $\lfloor k/2 \rfloor$ -cliques

blue: $\lceil k/2 \rceil$ -cliques

k even

red: $(\frac{k}{2}-1)$ -cliques

blue: $\frac{k}{2}$ -cliques

 $\label{eq:Challenge 2} % \begin{center} \begin{ce$

 $\label{eq:Challenge 2} % \begin{center} \begin{ce$

 $\label{eq:Challenge 2} % \begin{center} \begin{ce$

A **tetra-separation** is a mixed-sep'n (A, B) with |sep'r| = 4 s.t.:

- every vx in $A \cap B$ has $\geqslant 2$ neighb's in $A \setminus B$ and $B \setminus A$
- the edges in the sep'r form a matching

A **tetra-separation** is a mixed-sep'n (A, B) with |sep'r| = 4 s.t.:

- every vx in $A \cap B$ has $\geqslant 2$ neighb's in $A \setminus B$ and $B \setminus A$
- the edges in the sep'r form a matching

Every 4-con'd ${\cal G}$ decomposes along its totally-nested tetra-separations into parts that are

• quasi 5-con'd

Every 4-con'd ${\cal G}$ decomposes along its totally-nested tetra-separations into parts that are

- quasi 5-con'd
- generalised double-wheels

Every 4-con'd ${\cal G}$ decomposes along its totally-nested tetra-separations into parts that are

• quasi 5-con'd

- thickened $K_{4,m}$
- generalised double-wheels

Every 4-con'd ${\cal G}$ decomposes along its totally-nested tetra-separations into parts that are

- quasi 5-con'd
- generalised double-wheels
- thickened K_{4,m}
- cycle of triangles and 3-con'd graphs on ≤ 5 vxs.

con'd

block-cut

	con'd	
block-cut	\downarrow	
	2-con'd	K_2 , K_1
Tutte	\downarrow	
	3-con'd	cycle, K_2

 K_2 , K_1

canonical Y- Δ transformation

4-con'd

Problem: Classify all $\ensuremath{\mathbf{vertex\text{-transitive}}}$ finite con'd G

Problem:	Classify all $\ensuremath{\mathbf{vertex\text{-}transitive}}$ finite con'd G	
Problem:	Classify all vertex-transitive finite con'd G	

Approach: Low connectivity first

Theorem (Carmesin & K. 23)

Every vertex-transitive finite con'd G is either

- a cycle, K_2 , K_1 ,
- quasi-4-con'd, or
- K_3 -expansion of a quasi-4-con'd 3-regular arc-transitive graph.

Theorem (K. & Planken 25)

Every quasi-4-con'd vertex-transitive finite G is either

• K_4/C_4 -expansion of quasi-5-con'd 4-regular arc-transitive graph.

- bagel-like,
- cube-like,
- . _ . . .
- quasi-5-con'd, or

bagel-like

bagel-like

bagel-like

bagel-like

cube-like

Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 25+)

 $\exists\operatorname{FPT-algorithm}$ with runtime $C(\ell)\cdot\operatorname{Poly}(\,|V(G)|\,)$ and

Input: Graph G, $\ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$

Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd

Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 25+)

 $\exists\operatorname{FPT-algorithm}$ with runtime $C(\ell)\cdot\operatorname{Poly}(\,|V(G)|\,)$ and

Input: Graph G, $\ell \in \mathbb{N}$ and $F \subseteq E(\overline{G})$

Output: No, or $\leqslant \ell$ -sized $X \subseteq F$ such that G + X is 4-con'd

C D

Crossing Lemma. Tetra-sep'ns only cross symmetrically:

(A,B) totally-nested

 \iff the sep'r of (A,B) is highly con'd:

Open: Extend the main result to all k.

Open: Directed graphs?

 $k \geqslant 2$: ???

k=1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23

Tetra-separation: mixed-sep'n (A,B) with |sep'r|=4 such that every vx in $A\cap B$ has $\geqslant 2$ neighb's in $A\smallsetminus B$ and in $B\smallsetminus A$, and cross-edges form matching.

Main result (K. & Planken 25)

Every 4-con'd G decomposes along its totally-nested tetra-sep'ns into parts that are quasi-5-con'd, thickened $K_{4,m}$'s,

Open: Graphs for $k \geqslant 5$. Digraphs for $k \geqslant 2$.

arXiv: 2504.00760 Thank you:) Slides: jan-kurkofka.eu