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• canonical: isomorphisms map parts to parts

• tree-decomposition (for fans)
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mixed-separation of G: (A,B) with A ∪B = V (G) and

A,B ̸= V (G)

separator of (A,B): (A ∩B) ∪ E(A∖B,B ∖A)

A tri-separation of G is a mixed-sep’n (A,B) with |sep’r| = 3 s.t.

every vx in A ∩B has ⩾ 2 neighb’s in A and B.
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(A,B) and (C,D) are nested if A ⊆ C and B ⊇ D

after possibly switching A with B or C with D;

otherwise they cross.

nested crossing
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Decomposing along a tri-separation





Theorem (Carmesin & K. 23)

Every 3-con’d G decomposes along its totally-nested nontrivial

tri-separations into parts that are

• quasi 4-con’d

• wheels

• thickened K3,m



• canonical ✓

• for tree-decomposition fans:

mixed-tree-decomposition torsos



k ⩾ 4?
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• every vx in A ∩B has ⩾ 2 neighb’s in A∖B and B ∖A

• the edges in the sep’r form a matching
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Main result (K. & Planken 25)

Every 4-con’d G decomposes along its totally-nested

tetra-separations into parts that are

• quasi 5-con’d

• generalised double-wheels

• thickened K4,m

• cycle of triangles and 3-con’d

graphs on ⩽ 5 vxs.
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canonical Y –∆ transformation

quasi-4-con’d

4-con’d



con’d

block-cut ⇓
2-con’d K2, K1

Tutte ⇓
3-con’d cycle, K2
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Theorem (Carmesin & K. 23)

Every vertex-transitive finite con’d G is either

• a cycle, K2, K1,

• quasi-4-con’d, or

• K3-expansion of a quasi-4-con’d 3-regular arc-transitive graph.



Theorem (K. & Planken 25)

Every quasi-4-con’d vertex-transitive finite G is either

• bagel-like,

• cube-like,

• quasi-5-con’d, or

• K4/C4-expansion of quasi-5-con’d 4-regular arc-transitive graph.
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Application: Connectivity Augmentation from 0 to 4

Theorem (Carmesin & Sridharan 25+)

∃FPT-algorithm with runtime C(ℓ) · Poly( |V (G)| ) and
Input: Graph G, ℓ ∈ N and F ⊆ E(G )

Output: No, or ⩽ ℓ-sized X ⊆ F such that G+X is 4-con’d
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Proof of tetra-decomposition
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Crossing Lemma. Tetra-sep’ns only cross symmetrically:
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(A,B) totally-nested

⇐⇒ the sep’r of (A,B) is highly con’d:
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Open: Extend the main result to all k.

Open: Directed graphs?

k = 1: Bowler, Gut, Hatzel, Kawarabayashi, Muzi, Reich 23

k ⩾ 2: ???



Tetra-separation: mixed-sep’n (A,B) with |sep’r| = 4 such that

every vx in A ∩B has ⩾ 2 neighb’s in A∖B and in B ∖A,

and cross-edges form matching.

Main result (K. & Planken 25)

Every 4-con’d G decomposes along its totally-nested tetra-sep’ns

into parts that are quasi-5-con’d, thickened K4,m’s,

or

Open: Graphs for k ⩾ 5. Digraphs for k ⩾ 2.

arXiv: 2504.00760 Thank you :) Slides: jan-kurkofka.eu


